SUPAC IR/MR Update

Glenn Van Buskirk, Ph.D.
PQRI Lead Author
April 2013
SUPAC IR/MR Update

• Why do it?
 – Oral solid dosage forms continue to be the most significant class of drug product submissions to FDA (brand and generic)
 – SUPAC CMC updates are typically multi-faceted
 • Current SUPAC guidelines don’t accommodate multiple changes easily and therefore approvals are slow
 • SUPAC changes to MR products are particularly cumbersome
SUPAC IR/MR
Historical Context

• What is PQRI?
 – An organization of organizations
 • AAPS, CHPA, FDA, Health Canada, IPEC, USP
 • Working relationships with other scientific organizations such as NIPTE
 – Dues are used for workshops and research projects to explore cutting-edge projects
 • Ideas and manpower for projects come from member organizations
PQRI
Structure & Accomplishments

• Biologics Technical Committee
 – Sequential Design Working Group (WG)
 – Dissolution WG
 – BCS Class III WG
 • Biowaivers
 – IVIVC Considerations
 • Workshop proceeding in preparation
PQRI
Structure & Accomplishments

• Development Technical Committee
 – Stability Shelf Life WG*
 – Container Closure WG (update underway)
 – Sulfonate Esters WG*
 – Leachables & Extractables WG*

* Report available on website
PQRI
Structure & Accomplishments

• Manufacturing Technical Committee
 – SUPAC TDS Whitepaper*
 – Nanoparticle WG
 – SUPAC IR/MR Whitepaper

* Report available on website
SUPAC IR/MR

• Update Goal:

Bring new development science and principles to bear so that regulatory relief can be sought for IR & MR products

– QbD, design space and statistical principles
– ICH controls of excipients, APIs and development processes
– PAT and real-time testing control of manufacturing processes
– IVIVC principles for assurance of BE
Approach

• Multi-disciplinary team assembled by PQRI’s Manufacturing Technical Committee
 – Thirty authors representing a broad array of pharmaceutical scientists from industry and FDA (3)
 – Present the science that has evolved since the original 1992 SUPAC IR/MR guidance
 – Suggest how that science can be used to justify SUPAC changes
 • Case examples used to underscore concepts
Approach (Continued)

• Assemble the science, concepts and examples in a Whitepaper
 – Publish the Whitepaper and use as a focal point for further discussion by Academia, Industry (brand and generic) and Regulatory (worldwide) experts

• Principles can be cited in CMC submissions by companies making SUPAC submissions
Structure of the SUPAC IR/MR Whitepaper

- History
- Discussion of Current Principles Affecting Development
 - ICH (Q8, Q9, Q10 & Q11) - US Focused
 - Rest of world [Canada (NOC), Europe, Japan]
 - Quality by Design Principles
 - QTPPs, TPPs, CPPs, CQAs
 - Statistical approaches to formulation and process variables
 - Univariant and multivariant designs
Structure of the SUPAC IR/MR Whitepaper

- Process Analytical Technology
 - Value in process control
 - Role in supporting SUPAC changes
- Improvements in control of API
- Critical excipients (functionality)
- IVIVC considerations
 - Value in development, scale-up and approval
 - Value in post approval changes (biowaivers)
Structure of the SUPAC IR/MR Whitepaper

• Improvements in the Control of Product Scale-Up and Validation
• Improvements in Finished Product Testing
 – Real-time testing and release
• Future Trends
 – Batch v. continuous processing
Examples
Example – Design Space
Example – Formulation Factors & CQAs

Formulation Design
- Material Parameters
- API Attributes
 - Particle Size
 - Particle Shape
 - Density
 - Cohesivity
 - Flowability
 - Compressibility

Excipient Attributes
- Excipient Functionality
- Excipient Grade
- Excipient Particle Size
- Excipient Surface Area
- Excipient Molecular Weight/Polymerization/Viscosity
- API-Excipient Compatibility
 - Physical Compatibility
 - Chemical Compatibility

Pre-blending
- Process Parameters
 - Sieving
 - Screen Size
 - Sieving
 - Roll Pressure/Torque

Granulation & Milling
- Process Parameters
 - Granulation
 - Roll Pressure/Torque
 - Roll Speed/Tip Speed
 - Milling
 - Crusher Speed/Rotor Speed
 - Screen Size

Blending & Final Blending
- Process Parameters
 - Blending
 - Blend Time
 - Sieving
 - Screen Size
 - Milling
 - Lube Time

Compression
- Process Parameters
 - Speed
 - Force

Film-Coating
- Process Parameters
 - Spray Rate
 - Exhaust Air Temp

Quality Attributes
- Pre-Blend Uniformity
- Granulation Particle Size Distribution
- Final Blend Uniformity
 - Appearance
 - Hardness
 - Weight
 - Disintegration
 - Moisture Content
 - Tablet Content Uniformity
 - Tablet Content Uniformity
 - Dissolution
 - Purity

Potential Critical
- Material Attributes
- IPC Quality Attributes
- Attributes of Finished Product
Example – PAT Impact on SUPAC

<table>
<thead>
<tr>
<th>Change Control Element</th>
<th>Current SUPAC IR/MR</th>
<th>Proposed QbD Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change Control Management</td>
<td>Highly specific in guidance documents for most elements</td>
<td>Follow principles outlined in ICH Q10</td>
</tr>
<tr>
<td>Types of Changes</td>
<td>Independent of product sensitivities</td>
<td>Product specific - changes impacting design space and control strategy as outlined in ICH Q8 & Q10</td>
</tr>
<tr>
<td>Filing Documentation</td>
<td>Based on level of change</td>
<td>No filing documentation if within design space</td>
</tr>
</tbody>
</table>
Example – PAT & QbD Justification for SUPAC Changes

• IR Batch Size
 – Current SUPAC: 10 x biobatch size; stability commitment
 – Proposed SUPAC: Any multiple so long as within approved blend design space

• MR Level 2 change in rate-controlling coating level
 – Current SUPAC: PAS
 – Proposed SUPAC: No filing requirement if within design space and controlled by PAT
Example – Impact of API CQAs on Product Quality

Continuous Improvement / Lifecycle Management

- QTPP
- CQAs
- Potential Impact to Safety and Quality?
 - Yes
 - Low Risk
 - Severity
 - Low
 - High
 - High Risk

- Non-Critical

Potential Impact to Safety and Quality?

- Low Risk
- High Risk

Criticality Assessment
Conclusions

• The Whitepaper authors have set a challenging goal
 – Will the Whitepaper be effective in influencing regulatory change?

• Data from prior SUPAC publications suggests that success is possible
 – Do not expect FDA to issue an updated guidance; therefore:
 » Companies need to make this happen by judicious use of the principles found in the paper – good science should always prevail
Conclusions

• There may be increased up-front costs (and time) in development
 – Increased use of statistical approaches to product and process design
 – Conduct of IVIVC studies
 – Cost for PAT equipment, installation and use
 – Changes to plant design?
 – Changes to personnel responsibilities?
 – Addition of new personnel and/or retraining of existing personnel?
Conclusions

- Can increases in up-front costs be offset by greater flexibility in SUPAC changes?
 - Industry will need to collect and hopefully publish data to encourage innovation
 - FDA should publish data showing changes to approval time and approval category (CBE v PAS) to encourage utilization
What is next for PQRI?

• Publication of Proceedings of IVIVC Workshop
 – More in-depth discussion of IVIVC considerations
 – International in scope

Look for it 3Q 2013
Thank You

Q&A
Reference Slides
SUPAC TDS Publications

http://www.pqri.org/publications/index.asp

Link to SUPAC TDS publication:
http://www.pqri.org/pdfs/PharmSciTech-article.pdf

For further information:
glennvb@optonline.net